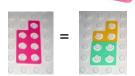
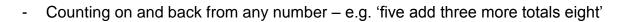
St Nicolas Calculation Policy

How children are taught to solve addition, subtraction, multiplication and division calculations


Introduction:

Children are introduced to the processes of calculation through practical, oral and mental activities. As they begin to understand the underlying ideas, they develop ways of recording to support their thinking and calculation methods, so that they develop both **conceptual understanding** and **fluency** in the fundamentals of mathematics. Whilst interpreting signs and symbols involved with calculation, orally in the first instance, children use models and images to support their mental and written methods of calculation. As children's mental methods are strengthened and refined they begin to work more efficiently, which will support them with using succinct written calculation strategies as they are developed.


From Early Years to Year 1:

There are fundamental skills that it is important for children to develop an early understanding of as building blocks to future learning in maths, including that linked to calculation. A selection of the skills include:

- Ordinality 'the ordering of numbers in relation to one another' e.g. (1, 2, 3, 4, 5...)
- Cardinality 'understanding the value of different numbers' e.g. (7 =
- Equality 'seven is the same total as four add three' e.g.

- Subitising 'instantly recognizing the number of objects in a small group, without counting them' e.g. \rightarrow five
- Conservation of number 'recognising that a value of objects are the same, even if they are laid out differently' e.g.
- One-to-one correspondence e.g.

🥃 12 = 🏼

- Using apparatus and objects to represent and communicate thinking e.g.
- .

17 =

Maths language – using mathematical words verbally in every-day situations – e.g. 'climb up to the top' / 'climb down to the bottom'

The ability to calculate mentally forms the basis of all methods of calculation and has to be maintained and refined. A good knowledge of numbers or a 'feel' for numbers is the product of structured practice through progression in relevant practical maths experiences and visual representations.

By the end of Year 6, children will be equipped with efficient mental and written calculation methods, which they use with fluency. Decisions about when to progress should always be based on the security of pupils' understanding and their readiness to progress to the next stage. At whatever stage in their learning, and whatever method is being used, children's strategies must still be underpinned by a secure understanding and knowledge of number facts that can be recalled fluently.

The overall aims are that when children leave primary school they:

- Are able to recall number facts with fluency, having developed conceptual understanding through being able to visualise key ideas such as those related to place value through experience with practical equipment and visual representations;
- Make use of diagrams and informal notes to help record steps and part answers when using mental methods that generate more information than can be kept in their heads;
- Have an efficient, reliable, written method of calculation for each number operation that they can apply with confidence when undertaking calculations that they cannot carry out mentally;
- Are able to make connections between all four number operations, understanding how they relate to one another, as well as how the rules and laws of arithmetic can be applied.

Addition:

			Mente	al Calculation Strategies for Addition and Subtracti	ion
		Number Bonds			<u></u>
		7 + 3 = 10 Adjusting		Doubles	Near Doubles
		28 + 19 = 47		19.10 (19) (19) (19) (19) (19) (19) (19) (19)	
		+ 20	4	Bridging 47 + 17 = 64	44 + 34 = 78 70 + 8 = 78
		28	47 48	+ 3 + 10 + 4 47 50 60 64 <i>e.g. put big</i>	Reordering gnumber in head when counting on
		Finding the Dif 101 - 98 = 3 +1 $+198$ 99	ference +1 100 101		6 + 13 = 19 13 + 6 = 19 19
	Counting	Mental maths strategies	Rapid recall	Written calculation and appropriat understanding	te models and images to support conceptual
Stage 1:	Count in ones to and across 100 forwards	Pupils use apparatus to explore	Rapid recall of all pairs of numbers	 Combining two groups: Children develop a mental pic of the number system for use 	
	and backwards starting from 0, 1 and other	addition as the inverse of subtraction.	totalling numbers up to 20. Use	calculation. A range of key mo and images support this, alongside practical equipment	bdels $3+2=5$
	numbers. Count in multiples of two, five and ten.	3 2	structured apparatus – i.e. Numicon, tens frames,	 Teachers model use of number tracks to count on or line up counters/objects along the number track. This is a precur to use of a fully numbered 	'eight add two more makes ten'

		4 add 1 is 5 5 subtract 4 leaves 1	abaci, etc.	number-line.	'one more than four is five'
Stage 2:	Continue practicing above skills. Count in steps of 2, 3 and 5 forwards and backwards to and from zero. Count in tens from any number – link to coins in a piggy bank as well as a number square.	Reorder numbers when adding, i.e. start with largest number, find bonds, etc. Add doubles and derive near doubles. Round numbers to the nearest 10.	Recall addition facts for all numbers to 20.	 Counting on from any number: Children begin to use numbered lines to support their own calculations, initially counting in ones before beginning to work more efficiently. Counting on from the largest number: Children reorder calculations to start with the largest number. 	Number line with all numbers labelled $0 \ 1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8 \ 9 \ 10 \ 11 \ 12$ 18 + 5 18 + 5 $10 \ 1 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2 \ 2$
Stage 3:	Continue practicing above skills. Count from 0 in multiples of 4, 8, 50 and 100. Count on	adding.	Connect pairs totalling ten to pairs of multiples of 10 totalling 100.	 Expanded horizontal addition: Add numbers using structured apparatus to support understanding of place value. Make connections between partitioning both numbers using structured apparatus and partition 	

	by 10 or 100 from any two digit number. Link to counting stick: counting forwards and backwards flexibly. Count up and down in tenths – linking to visual image.	when adding 11 or 9 to a number. Relating inverse number operations – using structured apparatus to explore and understand that subtraction undoes addition.	Use 10ps in tens frame. Recall pairs of two-digit numbers with a total of 100, i.e. 32 + ? = 100.	the second number only using a number line.	By partitioning and recombining 30+40 = 70 5+7 = 12 70+12 = 82 35+47 +30 +3 $+247$ 77 80 82
Stage 4:	Continue practicing previous skills. Count forwards and backwards from 0 in multiples of 6, 7, 9, 25 and 1000 using counting sticks, number lines, number squares, etc. Count up and down in tenths, hundredths and simple fractions	Bridging through 60 for time, i.e. 70 minutes = 1 hour and 10 minutes. Rounding any number to the nearest 10, 100 or 1000. Rounding numbers with one decimal place to nearest whole number. Explore inverse as a way to derive new facts and to check	As above. Use known facts and place value to derive new ones, i.e. 'If I know 8 + 3 = 11, I also know 0.8 + 0.3 = 1.1 and 8/100 + 3/100 = 11/100.' Sums and differences of pairs of multiples of 10, 100 or 1000. Addition	 Expanded horizontal method, leading to columnar addition: Written recording should follow teacher modelling around the size of numbers and place value using a variety of concrete materials, e.g. straws, Numicon, Dienes and place-value cards. Teachers model how numbers can be partitioned into tens and ones, as well as in different ways, e.g. 20 + 5 10 + 15 As children move towards using a columnar method, links continue to be made with earlier models and images, including the number line. 	It is crucial that empty number lines are kept as well as using more formal written calculation methods. Counting on in tens and ones to solve an addition calculation: $^{34+23:57}$ $^{+10}$ $^{+10}$ $^{+10}$ $^{+1.414}$ 34 44 $^{54.5556.57}$ Counting on more efficiently: $^{34+23:57}$ $^{+20}$ $^{+30}$ $^{+30}$ $^{+3}$ 34 44 54 57

	using models and images, i.e. Dienes equipment, counting stick, ITPs.	accuracy of answers.	doubles of numbers to 100. Pairs of fractions totalling 1.		
	Toris Unity I's	use Dienes equi	pment to ensur		value when using columnar addition.
Stage 5:	Count forwards and backwards in steps of powers of 10 for any given number up to one million. Continue to count forwards and backwards in simple fractions. Count forward and backwards in appropriate decimals and	Use apparatus and knowledge of place value to add decimals, i.e. $3.8 + 2.5 =$ 5 + 1.3 Reorder increasingly complex calculations, i.e. $1.7 + 2.8 +$ 0.3 = 1.7 + 0.3 + 2.8 Compensating - i.e. 405 + $399 \rightarrow$ add 400 and then subtract 1.	Continue to practice previous stage and make links between known facts and addition pairs for fractions, percentages and decimals Doubles and halves of decimals, i.e. half of 5.6, double 3.4.	 Expanded vertical method, leading to columnar addition: Teachers model a column method that records and explains partial mental methods. There remains an emphasis on the language of calculation, e.g. 'Forty plus seventy equals one-hundred and ten.' 'Seven add six equals thirteen.' before recombining numbers. Teachers also model the language of: 'Four tens add seven tens total eleven tens or 110.' Teachers similarly advance to model the addition of two 3-digit numbers with the expectation that as children's knowledge of place value is secured, they become 	Informal columnar: Adding the tens first: 47 $+\frac{76}{110}$ $\frac{13}{123}$ Adding the ones first: 47 $+\frac{76}{13}$ $\frac{110}{123}$

percentages.	Sums and	ready to approach a formal	
percentageo.	differences	ready to approach a formal compact method.	
	of decimals,	compact method.	
	i.e. 6.5 + 2.7		
	1.0. 0.0 1 2.7		

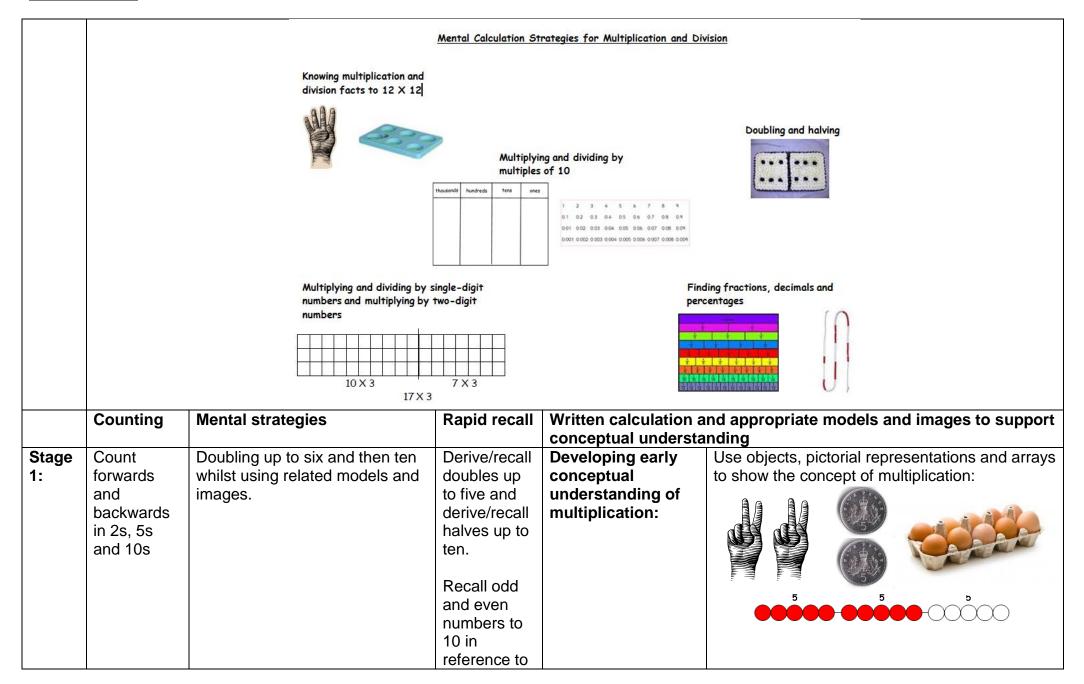
Stage 6:	Continue to practice	Bridging through	Ensure all children are	Columnar addition (formal written method):	Pupils to be encouraged to consider mental strategies first.
Stage 6:	Continue to practice previous skills. Count forwards and backwards in simple fractions, decimals and percentages.	Bridging through decimals, i.e. 0.8 + 0.35 = 0.8 + 0.2 + 0.15 using empty number lines. Partitioning using near doubles, i.e. 2.5 + 2.6 = 5 + 0.1 Reorder decimals, i.e. 4.7 + 5.6 - 0.7 as $4.7 -$ 0.7 + 5.6 = 4 + 5.6.	Ensure all children are confident recalling basic facts to 20 and deriving facts using place value. Make links between decimals, fractions and percentages.	 Columnar addition (formal written method): The concept of exchange is introduced through continued use of practical equipment (manipulatives). Teachers model: "I have two tens and five ones, which need adding to four tens and seven ones." "I add five ones to seven ones, which gives me twelve ones." "I exchange ten of my twelve ones for a ten counter." "I add my three tens and four tens to make seven tens." "Altogether, I have seven tens." "Altogether, I have seven tens and two ones." Teachers similarly advance to model the addition of two 3-digit numbers, e.g. 	Pupils to be encouraged to consider mental strategies first. Formal columnar: 25 +47. Tens Ones 25 +47. 25 +47. 25 +47. 25 +47. 25 12 1

		25 +47 72 1 Tens Ones

Subtraction:

	Counting	Mental strategies	Rapid Recall	Written calculation and conceptual understand	d appropriate models and images to support ding
Stage 1:	Count in ones to and across 100, forwards and backwards starting from 0, 1 and other numbers. Count in multiples of two, five and ten.	Pupils use apparatus to explore addition as the inverse of subtraction: 	Rapid recall of subtraction facts for numbers up to 10. Use structured apparatus, i.e. Numicon, tens frames, abaci etc.	 Subtraction as taking away from a group: Children develop a mental picture of the number system for use with calculation. A range of key models and images support this, alongside practical equipment. Teachers model use of number tracks to count back or remove counters/objects from the number track or set. This is a precursor to use of a fully numbered number-line. 	O230507800 ••• 5-2=3 ••• •six take away two leaves four' 'six take away two leaves four' ••• ••• •one less than six is five'
Stage 2:	Continue practicing above skills. Count in steps of 2, 3 and 5, forwards and	Bridging through two digit numbers, i.e. 24 - 19 = 19 + 1 + 4 using number lines. Subtracting 11 by subtracting 10 and then 1 more. Move	Recall subtraction (and addition) facts for all numbers to 20.	Subtracting by counting back and on: • Children begin to use numbered lines to support their	Number line with all numbers labelled 0 1 2 3 4 5 6 7 8 9 10 11 12 13 - 5 = 8 8 10 11 12

and zero Cou from num link in a ban as a squa	unt in tens apparatus. n any nber – to coins piggy k as well a number are.	0 and ig	own calculations, initially counting back in ones before beginning to work more efficiently.	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
3: pracabov abov Cou in m of 4 and Cou and 10 c from digit Link cour stick cour forw bacl flexi Cou and tentl linki	nting subtraction u k addition. nting vards and kwards	ugh 10subtractionsof 10from ten toof 10from ten tosubtractionssubtractionsoracticefromenmultiples of1 or 910 totallinger.100.rse10ations –10d10explore10	 Finding the difference: Teachers model how to find the difference when two numbers are relatively 'close together.' Initially children compare two sets before moving on to a number line comparison. Pupils are taught to choose whether to count on or back depending on which is more efficient. 	Comparing two sets: comparison or difference.


Stage 4:	Continue practicing of previous skills. Count forwards and backwards from 0 in multiples of 6, 7, 9, 25 and 1000 using counting sticks, number lines, number squares, etc. Count up and down in tenths, hundredths and simple fractions using models and images, i.e. Dienes equipment, counting stick, ITPs.	Bridging through 60 for time, i.e. 70 minutes = 1 hour and 10 minutes Rounding any number to the nearest 10, 100 or 1000. Rounding numbers with one decimal place to nearest whole number. Explore inverse as a way to derive new facts and to check accuracy of answers.	As above. Use known facts and place value to derive new ones, i.e. 'If I know 11 - 3 = 8, I also know 1.1 - 0.3 = 0.8 and 8/100 - 3/100 = 5/100.' Sums and differences of pairs of multiples of 10, 100 or 1000. Subtraction of fractions totalling 1, i.e. $1 - 0.3 =$ 0.7	Subtracting TU – U and TU – TU:	Use empty number lines to find the difference by bridging through multiples of ten. 74 -27 = 47 +3 1 0 27 3070 $74Subtract by starting with the first number andpartitioning the second, i.e.74 - 2774 - 20 = 5454 - 4 = 5050 - 3 = 47$
Stage 5:	Count forwards and backwards in steps of powers of 10 for any given number up to one million.	Use apparatus and knowledge of place value to subtract decimals, i.e. 3.8 - 2.5 = 1.3 Reorder increasingly complex calculations, i.e. 1.7	Continue to practice previous stage and make links between known facts and addition	First stage of column method, including expanded method: • Written recording should follow teacher modelling	Children should continue to use empty number lines and use more formal written methods when numbers become too big or complex.

	Continue to count forwards and backwards in simple fractions. Count forward and backwards in appropriate decimals and percentages.	-5-0.7 = 1.7 - 0.7 -5. Compensating – i.e. 405 - 399 → subtract 400 and then add 1.	pairs for fractions, percentages and decimals. Doubles and halves of decimals, i.e. half of 5.6, double 3.4. Sums and differences of decimals, i.e. 6.5 + 2.7	around the size of numbers and place value using a variety of concrete materials, e.g. straws, Numicon, Dienes and place-value cards.	Counting back in tens and ones to solve an addition calculation: $47 - 23 = 24$ $\underbrace{-1 -1 -1 -10 -10}_{24 25 26 27 37 47}$ Counting back more efficiently: $47 - 23 = 24$ $\underbrace{-3 -10 -10}_{24 27 37 47}$
3	363 - 147 = 21 50 13 300 + 60 + 3 100 + 40 + 7 200 + 10 + 6			erstand transference of n	es equipment to ensure children umbers when using columnar action.
		163-147 300+60+3 -100+10+7 a	Tene D'e L'e L'e	363-147 5013 300+6478 100 -100+30+7 6 b -100	Maxwer Maxwer<

take away seven ones from twelve ones, so that

 ones left. 4. "I can now subtract four tens from six tens, which leaves me with two tens." 5. "I recombine two tens and fives ones to understand that I am left with twenty-five." Teachers similarly advance to model the subtraction of one 3-digit number from another, e.g.
<u>246</u> <u>317</u>

Multiplication:

Stage 3:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 8s and 10s from zero. Count up and down in tenths.	Use doubling to make connections between the 2X, 4X and 8X-tables. Understand that multiplication can be undertaken by partitioning numbers, e.g. 12 X 4 = 10 X 4 + 2 X 4 Introduce the structure of scaling: e.g. Find a ribbon that is 4 times as long as the blue ribbon	Recall odd and even numbers to 100 in reference to structured apparatus. Recall and use multiplication facts for the 2X, 3X, 4X, 5X, 8X and 10X tables.	Relate multiplying a 2-digit by 1-digit number using repeated addition and arrays to represent:	Children use an empty number line to chunk efficiently: $4 \times 12 = 48$ $4 \times 10 = 40$ $4 \times 2 = 8$ $4 \times 10 = 40$ $4 \times 2 = 8$ $3 \times 13 = 39$ X 10 3 3 $7 \times 13 = 91$ $7 \times 13 = 91$ 7 7 70 21 7 70 21 7 70 21 7 70 21 7 70 21 7 70 70 7 70
Stage 4:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 7s, 8s, 10s, 25s and 1000s from zero. Count up and down in tenths and	Derive factor pairs of numbers using models and images, e.g. $\overbrace{20}^{\prime} \overbrace{20}^{\prime} 2$	Recall & use multiplication facts for all times-tables up to 12 X 12.	Relate multiplying a 3/2-digit by 1- digit number with arrays towards using long/short multiplication:	Relate multiplying a 3/2-digit by 1-digit number, now also setting it out as short multiplication. $\begin{array}{c c} \hline x & 10 & 3 \\ \hline 7 & 70 & 21 \\ \hline 7 & 70 & 70 \\ \hline $

Stage 5:	hundredths. Counting forwards	one. Use reordering to multiply three numbers. Identify multiples and factors, including finding all factor pairs	Recall & use multiplication	Relate multiplying a 4/3/2-digit by 1/2-	$\frac{7 \times 3 = 21}{= 91}$ At this stage, the non-statutory guidance in the national curriculum suggests teaching short multiplication; however, the team feel that an expanded form of calculation (as set out above) is be a better lead into long/short multiplication. $10 8$
	and backwards in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 25s and 1000s from zero.	of a number, and common factors of two numbers.	facts for all times-tables up to 12 X 12.	digit number with grid to using long multiplication:	10 100 80 3 30 24 18 X13 24 30 80 100 234
Stage 6:	Consolidate all previous counting, including forwards and backwards in fractions.	Perform mental calculations, including with mixed numbers and operations.	Recall & use multiplication facts for all times-tables up to 12 X 12. In addition, use facts confidently to make larger calculations.	Relate multiplying a 4/3/2-digit by 1/2- digit number with grid to using short multiplication:	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Division:

	Counting	Mental strategies	Rapid recall	Written calculation conceptual underst	and appropriate models and images to support tanding
Stage 1:	Count forwards and backwards in 2s, 5s and 10s	Doubling up to six and then ten whilst using related models and images.	Derive/recall doubles up to five and derive/recall halves up to ten. Recall odd and even numbers to 10 in reference to structured apparatus.	Developing early conceptual understanding of division as grouping and sharing:	Use objects, pictorial representations and arrays to show the concept of division as grouping and sharing.

Stage 2:	Count forwards and backwards in 2s, 3s, 5s and 10s from zero.	Begin to understand and use inverse number operations.	Derive/recall doubles up to ten and derive/recall halves up to twenty. Recall odd and even numbers to 20 in reference to structured apparatus. Recall and use multiplication facts for the	Understanding division as repeated subtraction: • Investigate division as repeated subtraction. • Through teacher modelling, children need to know that division is not	Number lines and arrays: $12 \div 3 = 4$ $12 \div 3 = 4$ $15 \div 5 = 3$ 0 5 10 15
Stage 3:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 8s and 10s from zero.	Use doubling to make connections between the 2X, 4X and 8X-tables. Understand that multiplication can be undertaken by partitioning numbers, e.g. 12 X 4 = 10 X 4 + 2 X 4 Introduce the structure of scaling: e.g. Find a ribbon that is 4 times as long as the blue ribbon.	2X, 5X and 10X-tables. Recall odd and even numbers to 100 in reference to structured apparatus. Recall & use multiplication facts for the 2X, 3X, 4X, 5X, 8X and 10X tables.	commutative. Dividing a 2-digit by 1-digit number, representing this efficiently on a number line:	Children use an empty number line to chunk efficiently. $96 \div 6 = 16$ $6 \times 6 = 36$ $10 \times 6 = 60$ 4 0 36 96

Stage 4:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 7s, 8s, 10s, 25s and 1000s from zero.	Derive factor pairs of numbers using models and images. Know what happens when a number is multiplied by zero or one. Use reordering to multiply three numbers.	Recall & use multiplication facts for all times-tables up to 12 X 12.	Dividing a 3/2-digit by 1-digit number, representing this efficiently on a number line, also in relation to long division: • At this stage, no remainders are present unless in a practical context.	Children use an empty number line to chunk efficiently. $224 \div 8 = 28$ $8 \times 8 = 64$ 20 x 8 = 160 4 0 64 224 8 224 8 224 8 224 8 224 8 224 224 8 224 $20 \times 8 = 160$ 64 224 $20 \times 8 = 160$ 64 $20 \times 8 = 160$ 64 $20 \times 8 = 160$ 64 - 64 64 - 64 0 $8 \times 8 = 64$ 0
Stage 5:	Counting forwards and backwards in 2s, 3s, 4s, 5s, 6s, 7s, 8s, 9s, 10s, 25s and 1000s from zero.	Identify multiples and factors, including finding all factor pairs of a number, and common factors of two numbers.	Recall & use multiplication facts for all times-tables up to 12 X 12.	 Dividing a 4/3/2- digit by 1-digit number, in relation to long division: By this stage, there is a statutory requirement that children can use a formal written calculation method, such as long division. Short division may begin to be taught alongside long division, but still with use of visual representations 	As schools have autonomy to decide children's progression in learning between long and short division in Years 5 and 6, the maths team suggest beginning with long division. Remainders should be interpreted in the following ways when long division is used: • as whole numbers • as fractions • through rounding in an appropriate way to the context Long division: $415 \div 9 = 46$ and $1/9$ $\frac{46 \text{ and } 1/9}{9 415}$ • $\frac{360}{55} (9 \times 40)$ $\frac{54}{1} (9 \times 6)$

Stage 6:	Consolidate all previous counting, including forwards and backwards in fractions.	Perform mental calculations, including with mixed numbers and different number operations.	Recall & use multiplication facts for all times-tables up to 12 X 12. In addition, use facts confidently to make larger calculations.	 Dividing a 4/3/2- digit by 2/1-digit number, in relation to long and then short division: By this stage, there is a statutory requirement that children can use formal written calculation methods, including long and short division. Use of visual representations – like the ones opposite – remain important. 	As schools have autonomy to decide children's progression in learning between long and short division in Years 5 and 6, the maths team suggest moving from long division to short division. Remainders should be interpreted in the following way when short division is used: • through rounding in an appropriate way to the context Long division: $432 \div 15 = 28 4/5$ 2 8 1 5 4 3 2 $- \frac{3 0 0}{1 3 2} 15 \times 20$ 1 3 2 $- \frac{1 2 0}{1 2} 15 \times 8$ $\frac{12}{15} = \frac{4}{5}$ Answer: $28 \frac{4}{5}$
					Short division: $38 \div 6 = 23$